

Journal of Organometallic Chemistry 487 (1995) 187-195

Synthese sowie Vergleich der spektroskopischen Parameter und Molekülstrukturen von Bis(tetrahydrofuran-O)magnesium-bis[bis(trimethylsilyl)phosphanid] und -arsanid]

Matthias Westerhausen *, Arno Pfitzner

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Deutschland

Eingegangen den 9. Juni 1994

Abstract

The reaction of Magnesium n/sec-dibutanide with bis(trimethylsilyl)phosphane, respectively -arsane in THF yields derivatives of the type $[(Me_3Si)_2E]_2Mg \cdot 2THF$ (E = P, As). Magnesium-bis[bis(trimethylsilyl)phosphanide] $\cdot 2THF$ crystallizes in the monoclinic space group C2/c with a = 1861.7(3) pm, b = 976.0(3) pm, c = 1921.2(3) pm, $\beta = 109.67(1)^\circ$ and Z = 4. The homologous arsanide crystallizes in the triclinic space group $P\overline{1}$ with a = 980.7(2) pm, b = 1266.1(2) pm, c = 1437.6(2) pm, $\alpha = 78.29(1)^\circ$, $\beta = 88.02(2)^\circ$, $\gamma = 70.28(1)^\circ$ and Z = 2. In both compounds the magnesium atoms are coordinated distorted tetrahedrally, the pnictogen atoms display pyramidal surroundings.

Zusammenfassung

Magnesium-*n/sec*-dibutanid reagiert mit Bis(trimethylsilyl)phosphan bzw. -arsan in THF zu Verbindungen des Typs $[(Me_3Si)_2E]_2Mg \cdot 2THF$ mit E = P, As. Magnesium-bis[bis(trimethylsilyl)phosphanid] $\cdot 2THF$ kristallisiert in der monoklinen Raumgruppe C2/c mit a = 1861.7(3) pm, b = 976.0(3) pm, c = 1921.2(3) pm, $\beta = 109.67(1)^\circ$ und Z = 4. Das homologe Arsanid kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit a = 980.72(2) pm, b = 1266.1(2) pm, c = 1437.6(2) pm, $\alpha = 78.29(1)^\circ$, $\beta = 88.02(2)^\circ$, $\gamma = 70.28(1)^\circ$ und Z = 2. Die Magnesiumatome sind verzerrt tetraedrisch, die Pnikogenatome pyramidal koordiniert.

Keywords: Magnesium; Phosphanide; Bis(trimethylsilyl)phosphanide; Arsanide; Bis(trimethylsilyl)arsanide; NMR spectroscopy; Crystal structure

1. Einleitung

Magnesium-bis[bis(trimethylsilyl)amid] wurde bereits 1963 von Wannagat et al. [1] durch Metallierung von 1,1,1,3,3,3-Hexamethyldisilazan (Bis(trimethylsilyl)amin) mit Magnesium-diorganiden dargestellt (Gl. (1)). Die Transmetallierung von Quecksilber-bis[bis(trimethylsilyl)amid] [2] oder Bis[bis(trimethylsilyl)amino]stannylen [3] mit Magnesium führt entsprechend Gl. (2) ebenfalls zur Bildung des gewünschten Diamids. Bradley et al. [2] klärten die Molekülstruktur des monomer vorliegenden Bis(tetrahydrofuran)-Komplexes auf, wir diejenige des dimeren, solvensfreien Derivats [4].

$$MgR_{2} + 2 HN(SiMe_{3})_{2}$$

$$\longrightarrow Mg[N(SiMe_{3})_{2}]_{2} + 2 RH \qquad (1)$$

$$Mg + M[N(SiMe_3)_2]_2 \longrightarrow Mg[N(SiMe_3)_2]_2 + M$$
(2)

M = Hg, Sn

Im Gegensatz zum frühen Interesse an den Magnesium-diamiden fanden die homologen Magnesiumbis[bis(trimethylsilyl)phosphanide] erst vor kurzem Beachtung [5,6], während die Arsen-Derivate bisher unbekannt sind. Allerdings synthetisierten Job et al. [7]

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05124-0

bereits 1924 Magnesium-diphenylarsanid-bromid entsprechend Gl. (3) aus Ethylmagnesiumbromid und Diphenylarsan, während Blicke und Oneto [8] elf Jahre später für die Metallierung von $HAs(C_6H_5)_2$ Phenylmagnesiumbromid einsetzten.

$$(H_5C_6)_2AsH + R - Mg - Br \xrightarrow[-RH]{} (H_5C_6)_2As - Mg - Br$$
(3)

$$R = Et, C_6H_5$$

2. Ergebnisse

2.1. Synthese

Während das für die Synthese von Magnesiumbis[bis(trimethylsilyl)phosphanid] \cdot 2THF 1 benötigte Bis(trimethylsilyl)phosphan [9,10] durch Protolyse leicht darstellbar ist, erweist sich Tris(trimethylsilyl)arsan als wesentlich weniger protolyseempfindlich. Bürger und Goetze [9] beschreiben die Synthese von HAs(SiMe₃)₂ durch Reaktion von Tris(trimethylsilyl)arsan mit Wasser oder Methanol; nach unseren Untersuchungen ist allerdings der Zusatz einer starken Brönstedtsäure unerläßlich, um eine quantitative Protolyse entsprechend Gl. (4) zu erzielen.

$$2 \operatorname{As}(\operatorname{SiMe}_3)_3 + \operatorname{H}_2 O \xrightarrow{\mathrm{H}^+} 2 \operatorname{HAs}(\operatorname{SiMe}_3)_2 + (\operatorname{Me}_3 \operatorname{Si})_2 O$$
(4)

Becker und Mitarbeiter [11] beschreiben die Synthese des Bis(trimethylsilyl)arsans durch Reaktion von Lithium-bis(trimethylsilyl)arsanid · DME mit *tert*-Butylchlorid entsprechend Gl. (5), wobei *iso*-Buten entweicht und die Bildung eines Lithiumchlorid-Niederschlags beobachtet wird.

$$(\text{Me}_{3}\text{Si})_{2}\text{AsLi} \cdot \text{DME} + \text{Cl} - \text{C}_{4}\text{H}_{9}$$

$$\xrightarrow{-\text{DME}} \text{HAs}(\text{SiMe}_{3})_{2} + \text{LiCl} + \text{C}_{4}\text{H}_{8} \quad (5)$$

Die Metallierung von $HE(SiMe_3)_2$ (E = P, As) in THF mit Magnesium-bis[bis(trimethylsilyl)amid] oder -dibutanid führt in guten Ausbeuten zur Bildung der Bis(THF)-Addukte von Magnesium-bis[bis(trimethylsilyl)phosphanid] 1 und -arsanid] 2 entsprechend Gl. (6).

$$MgR_{2} + 2 HE(SiMe_{3})_{2}$$

$$\xrightarrow{THF} [(Me_{3}Si)_{2}E]_{2}Mg \cdot 2THF \qquad (6)$$

$$E = P(1), As (2)$$

$$R = N(SiMe_{3}) = n Bu (see Bu)$$

 $R = N(SiMe_3)_2, n-Bu/sec-Bu$

Die Verbindungen 1 und 2 sind farblose, hydrolyseempfindliche Feststoffe, die aus einem Lösungmittelgemisch von THF und *n*-Pentan in Form farbloser Quader kristallisieren.

2.2. NMR-Spektroskopie

In Tabelle 1 sind die NMR-Parameter der Verbindungen des Typs $[(Me_3Si)_2E]_2Mg \cdot 2THF$ mit E

Tabelle 1

NMR-Parameter der Magnesium-Derivate des Typs $[(Me_3Si)_2E]_2 \cdot 2THF$ und zum Vergleich der Wasserstoffverbindungen HE(SiMe_3)_2. Bei den Stickstoff-Verbindungen handelt es sich um zu 97% [¹⁵N]markierte Derivate ^a

	H ¹⁵ NR ₂	$Mg(^{15}NR_2)_2$	HPR ₂ ^b	Mg(PR ₂) ₂ 1	HAsR ₂	$\frac{Mg(AsR_2)_2}{2}$	-
L.M. ^c	C ₆ D ₆	$\overline{C_6 D_6}$	C ₆ D ₆	OC ₄ D ₈	C ₆ D ₆	OC ₄ D ₈	
¹ H:							
$\delta(SiMe_3)$	0,03	0,35	0,21	0,18	0,29	0,24	
$^{3}J(E-H)$	0,8	< 1	4,4	3,80	-	-	
δ(HE)	-0,08	-	0,63	-	0,00	-	
${}^{1}J(E-H)$	66,4	-	187,0	-	-	-	
¹³ C{ ¹ H}:							
$\delta(SiMe_3)$	2,70	6,60	3,39	7,18	3,89	7,58	
$^{1}J(Si-C)$	56,2	52,8	49,6	d	48,1	45,9	
$^{2}J(E-C)$	2,3	2,3	10,7	11,0	-	-	
Δδ ^c	3	3,90		3,79		3,69	
²⁹ Si{ ¹ H}:							
$\delta(SiMe_1)$	2,29	- 8,60	3,22	1,81	3,29	0,26	
$^{1}J(E-Si)$	13,3	8,1	25,1	33,0	-		
Δδ ^e	10,8	10,89		1,41		3,03	
E{ ¹ H}:							
$\delta(E)$	-358,1	- 345,5	-235,7	- 294,7	-	-	
Δδ ^e	- 12	2,60	59	,00			

^a R = SiMe₃, chemische Verschiebungen [ppm], Kopplungskonstanten [Hz].

^b Siehe auch Lit. [9,10]; die von Drake und Mitarbeitern [12] angegebenen Werte sind fehlerhaft und identisch mit den literaturbekannten Werten für Tris(trimethylsilyl)phosphan.

^c Lösungsmittel (L.M.): $[D_6]$ Benzol (C_6D_6), $[D_8]$ THF (OC_4D_8).

^d Als X-Teil eines Spektrums vom AA'MX-Typ nicht auswertbar.

^e Verschiebungsdifferenz zwischen der protonierten und metallierten Verbindung ($\Delta \delta = \delta \{HE(SiMe_3)_2\} - \delta \{Mg[E(SiMe_3)_2]_2\}$).

Abb. 1. Stereoskopische Darstellung des Moleküls von Magnesium-bis[bis(trimethylsilyl)phosphanid] · 2THF 1. Die Ellipsoide repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%, auf die Wiedergabe der Wasserstoffatome wurde der Übersichtlichkeit wegen verzichtet. Die Beschriftung der Atome der zweiten kristallographisch erzeugten Molekülhälfte ist mit einem Apostroph gekennzeichnet und sinngemäß zu ergänzen.

Tabelle 2

Bindungslängen [pm] und -winkel sowie ausgewählte Torsionswinkel [°] in den Verbindungen des Typs $[(Me_3Si)_2E]_2Mg \cdot 2THF$ (E = P (1), As (2))

	$[(Me_3Si)_2P]_2Mg \cdot 2THF 1$	$[(Me_3Si)_2As]_2Mg\cdot 2'$	THF 2	
(a) Bindungslängen:	n = 1	n = 1	xn = 2	
Mg-E(n)	250,31(6)	258,9(1)	259,7(1)	
E(n)-Si(n1)	220,94(7)	232,2(1)	232,2(1)	
E(n)-Si(n2)	221,05(8)	232,9(1)	232,2(1)	
Si(n1)-C(n11)	187,4(2)	187,9(4)	187,2(4)	
Si(<i>n</i> 1)–C(<i>n</i> 12)	187,3(3)	187,5(4)	186,8(5)	
Si(n1)-C(n13)	187,3(3)	185,7(4)	187,8(4)	
Si(n2)-C(n21)	187,6(3)	187,6(4)	187,4(4)	
Si(n2)-C(n22)	187,8(3)	188,0(4)	188,1(4)	
Si(n2)-C(n23)	186.7(3)	186,7(4)	187,7(5)	
Mg-O(n)	205,5(1)	205,7(2)	205,4(2)	
O(n)-C(n1)	144,8(2)	146,1(4)	146,2(4)	
C(n1)-C(n2)	150,1(3)	150,1(5)	149,5(5)	
C(n2)-C(n3)	151,6(4)	150,7(6)	149,9(6)	
C(n3)-C(n4)	150,3(4)	150,1(5)	146,3(6)	
C(n4)-O(n)	145,0(2)	145,9(4)	144,4(4)	
(b) Bindungswinkel:				
E-Mg-E	143,62(4)	147,42(4)		
Mg-E(n)-Si(n1)	113,44(3)	106,20(5)	116,16(4)	
Mg-E(n)-Si(n2)	110,41(3)	101,33(4)	106,66(4)	
Si(n1)-E(n)-Si(n2)	104,82(3)	101,55(4)	102,85(4)	
E(n)-Mg-O1	102,11(4)	101,68(8)	99,56(8)	
E(n)-Mg-O2	102,61(4)	101,25(8)	102,51(7)	
O-Mg-O	93,42(9)	91,74(10)		
$\Sigma MEM'^{a}$	328,67	309,08	325,67	
(c) Torsionswinkel: ^b				
O(n)-C(n1)-C(n2)-C(n3)	- 19,6(3)	- 28,7(5)	-24,7(5)	
C(n1)-C(n2)-C(n3)-C(n4)	- 3,0(3)	+ 37,6(5)	+ 33,8(6)	
C(n2)-C(n3)-C(n4)-O(n)	+24,5(3)	-32,6(5)	- 30,1(6)	
C(n3)-C(n4)-O(n)-C(n1)	- 37,9(3)	+ 14,9(4)	+ 14,8(5)	
$\frac{C(n4)-O(n)-C(n1)-C(n2)}{2}$	+ 36,0(3)	+ 8,8(5)	+ 6,6(5)	

^a Winkelsumme am Pnikogenatom.

^b Das Vorzeichen des Winkels $\vartheta(A-B-C-D)$ ist positiv, wenn bei einer Blickrichtung von B nach C die Bindung A-B durch eine Drehung im Uhrzeigersinn mit der Bindung C-D zur Deckung gebracht wird.

als N, P und As und zum Vergleich diejenigen von Bis(trimethylsilyl)amin, -phosphan und -arsan zusammengestellt. Während die ¹H-NMR-Daten keine Besonderheiten aufweisen, ergeben sich bei der ¹³C{¹H}-NMR-Spektroskopie eindeutige Charakteristika. Die $\delta(^{13}C\{^{1}H\})$ -Werte der Magnesium-Derivate sind im Vergleich zur entsprechenden Wasserstoffverbindung HE(SiMe₃)₂ einerseits um 3,5-4 ppm zu tiefem Feld verschoben, andererseits erniedrigen sich die ¹J(²⁹Si-¹³C)-Kopplungskonstanten um bis zu 3,4 Hz. Die ²J(E-¹³C)-Werte für die ¹⁵N- und ³¹P-Kerne weisen bei diesem Vergleich hingegen keine Unterschiede auf.

Die ²⁹Si{¹H}-NMR-Parameter dienen bei den Bis(trimethylsilyl)amiden der Erdalkalimetalle als empfindliche Sonde sowohl auf die Art des Metalls als auch auf seine koordinative Umgebung; so beobachtet man eine Verschiebungsdifferenz $\Delta\delta$ (Tabelle 1) von nahezu 11 ppm für das Amid, während dieser Unterschied der chemischen ²⁹Si{¹H}-Verschiebungen für die homologen Phosphanide 1 und Arsanide 2 bemerkenswerterweise sehr klein ausfällt.

Während das $\delta(^{15}N{^1H})$ -Singulett von Magnesiumbis[bis(trimethylsilyl)amid] · 2THF gegenüber dem Signal des 1,1,1,3,3,3-Hexamethyldisilazans zu tiefem Feld verschoben ist, treten beim homologen Phosphanid 1 umgekehrte Verhältnisse auf. Bei dem Magnesium-bis-[bis(trimethylsilyl)phosphanid] · 2THF treten größere $^1J(^{29}Si-E)$ -Kopplungskonstanten auf als beim HP-(SiMe₃)₂ selbst; beim Stickstoffderivat trifft man wieder umgekehrte Verhältnisse an.

Bei den NMR-spektroskopischen Untersuchungen fällt die Ähnlichkeit der Phosphanide 1 und Arsanide 2 auf, während andererseits Magnesium-bis[bis(trimethylsilyl)amid] · 2THF wegen des planar koordinierten Stickstoffatoms charakteristische Besonderheiten aufweist.

2.3. Molekülstrukturen

Die Verbindungen 1 und 2 lassen sich durch Kühlen von bei Zimmertemperatur gesättigten THF-Lösungen auf -30° C in Form farbloser Quader erhalten. Abb. 1 zeigt die Molekülstruktur von Magnesium-bis[bis(trimethylsilyl)phosphanid]·2THF 1 in stereoskopischer Darstellung sowie das Numerierungsschema. Das Molekül weist kristallographische C₂-Symmetrie auf, die durch die C₂-Achse erzeugte zweite Molekülhälfte wird durch ein Apostroph gekennzeichnet. In Tabelle 2 sind die Bindungslängen und -winkel zusammengestellt, Tabelle 3 enthält die Ortskoordinaten und die äquivalenten isotropen Auslenkungsparameter der schwereren Atome.

In Abb. 2 ist die Molekülstruktur des homologen Arsanids 2 stereoskopisch dargestellt. Die beiden Arsanid-Liganden werden durch die erste Laufzahl nunterschieden, wobei mit zunehmender Anzahl der Bindungen die zur Zählung verwendeten Ziffern zunehmen. In Tabelle 2 sind die Bindungslängen und -winkel, in Tabelle 4 die Ortskoordinaten und äquivalenten isotropen Auslenkungsparameter der Nicht-Wasserstoffatome aufgelistet.

In den Verbindungen des Typs $[(Me_3Si)_2E]_2Mg \cdot 2THF$ ist das Magnesiumatom stark verzerrt tetraedrisch von zwei Sauerstoff- und zwei Pnikogenatomen umgeben. Der E-Mg-E-Bindungswinkel steigt von 127.9° für das Stickstoff-Derivat [2] über 143,6° für E = P auf einen Wert von 147,4° für

Abb. 2. Stereoskopische Darstellung des Moleküls sowie das Numerierungsschema von Magnesium-bis[bis(trimethylsilyl)arsanid] \cdot 2THF 2. Die Ellipsoide repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%, die Wasserstoffatome wurden der Übersichtlichkeit wegen nicht eingezeichnet. Die Beschriftung der Atome ist sinngemäß zu ergänzen.

Tabelle 3

Ortskoordinaten (×10⁴) und äquivalente isotrope Auslenkungsparameter U_{eq} (pm²·10⁻¹) der schwereren Atome von Magnesium-bis [bis(trimethylsilyl)phosphanid]·2THF 1. Äquivalente isotrope U_{eq} -Werte sind als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors definiert

Atom	x	у	z	$U_{\rm eq}$
Mg	10000	- 1032(1)	7500	28(1)
P (1)	8668(1)	- 232(1)	7298(1)	34(1)
Si(11)	8183(1)	1010(1)	6286(1)	42(1)
C(111)	7214(1)	1659(3)	6216(2)	64(1)
C(112)	8064(2)	- 121(4)	5467(2)	76(1)
C(113)	8756(2)	2520(4)	6175(2)	78(1)
Si(12)	8643(1)	1129(1)	8209(1)	40(1)
C(121)	9342(2)	445(4)	9089(1)	69(1)
C(122)	7682(2)	1088(4)	8328(2)	66(1)
C(123)	8877(2)	2972(3)	8136(2)	77(1)
O(1)	9835(1)	- 2476(1)	6682(1)	45(1)
C(11)	10440(1)	- 3161(3)	6502(1)	57(1)
C(12)	10065(2)	- 3700(3)	5733(2)	66(1)
C(13)	9218(2)	- 3732(3)	5616(2)	66(1)
C(14)	9153(2)	- 3283(3)	6341(2)	58(1)

Verbindung 2. In beiden Derivaten 1 und 2 liegen die Mg-O-Bindungslängen bei 205,5 pm, während im homologen Magnesium-bis[bis(trimethylsilyl)amid] · 2THF

Tabelle 4

Ortskoordinaten (×10⁴) und äquivalente isotrope Auslenkungsparameter U_{eq} (pm²·10⁻¹) der schwereren Atome von Magnesium-bis-[bis(trimethylsilyl)arsanid]·2THF 2. Äquivalente isotrope U_{eq} -Werte sind als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors definiert

Atom	x	у	z	$U_{\rm eq}$
Mg	2181(1)	7109(1)	1492(1)	24(1)
As(1)	3620(1)	4932(1)	1795(1)	25(1)
Si(11)	2756(1)	4122(1)	3184(1)	29(1)
C(111)	746(4)	4489(4)	3013(3)	46(1)
C(112)	3575(6)	2521(4)	3411(4)	54(1)
C(113)	3085(6)	4576(5)	4281(3)	51(1)
Si(12)	5866(1)	4879(1)	2322(1)	29(1)
C(121)	6831(5)	5382(4)	1267(3)	43(1)
C(122)	7058(5)	3384(4)	2867(4)	50(1)
C(123)	5799(6)	5826(5)	3175(4)	56(1)
As(2)	836(1)	8888(1)	2216(1)	27(1)
Si(21)	2132(1)	9253(1)	3361(1)	31(1)
C(211)	3794(4)	9481(4)	2810(3)	42(1)
C(212)	2756(6)	8123(5)	4464(3)	58(1)
C(213)	1011(5)	10622(4)	3724(4)	53(1)
Si(22)	- 1057(1)	8495(1)	3060(1)	35(1)
C(221)	-2370(5)	9828(5)	3373(5)	58(1)
C(222)	- 2044(4)	7972(4)	2254(4)	49(1)
C(223)	- 570(6)	7383(5)	4191(4)	61(1)
O (1)	632(2)	7264(2)	496(2)	32(1)
C(11)	- 192(5)	8356(3)	- 113(3)	43(1)
C(12)	- 1350(6)	8123(4)	- 609(4)	60(1)
C(13)	-663(5)	6876(4)	-655(3)	55(1)
C(14)	170(4)	6358(3)	278(3)	35(1)
O(2)	3384(2)	7734(2)	469(2)	31(1)
C(21)	3821(4)	7251(3)	- 380(3)	35(1)
C(22)	4670(6)	7938(4)	- 928(3)	51(1)
C(23)	4114(7)	9056(4)	- 604(3)	74(2)
C(24)	3785(6)	8745(4)	393(3)	52(1)

wegen des größeren sterischen Anspruchs der Bis(trimethylsilyl)amid-Liganden deutlich längere Bindungen von 209 pm und 210 pm auftreten [2], wobei Mg-O-Abstände allerdings in einem sehr weiten Bereich schwanken können [13].

Obwohl nun der O-Mg-O-Bindungswinkel im Magnesium-bis[bis(trimethylsilyl)phosphanid] · DME durch den $O \cdot O$ -Abstand (Biß des Chelatliganden DME) von 256 pm mit einem Wert von 77,5° sehr klein ausfällt, beobachtet man einen überraschend engen P-Mg-P-Winkel von nur 122,5° [6]. Durch die Methoxygruppen des DME-Liganden werden die Si₂P-Einheiten gegeneinander verdreht, so daß die Koordinationslücken an den Phosphoratomen in die Richtung einer Trimethylsilyl-Gruppe des zweiten Phosphanid-Rests zeigen. Im Gegensatz zu dieser Konformation weisen bei den Bis(THF)-Komplexen 1 und 2 die Me₃Si-Substituenten aufeinander zu, so daß die Koordinationslücken an den Pnikogenatomen den größtmöglichen Abstand zueinander einnehmen.

Die beiden Derivate 1 und 2 weisen zahlreiche noch zu besprechende Gemeinsamkeiten auf, sie unterscheiden sich jedoch deutlich in der Konformation der THF-Liganden. Während im Magnesium-bis[bis(trimethylsilyl)phosphanid] \cdot 2THF 1 mit einer Torsionswinkelabfolge von 36, -20, -3, 25 und -38° nach Allmann [14] die *envelope*-Konformation verwirklicht wird, beobachtet man für die beiden THF-Moleküle des Magnesium-bis[bis(trimethylsilyl)arsanids] \cdot 2THF 2 die *twist*-Konformation (Tabelle 2).

Im Magnesium-bis[bis(trimethylsilyl)amid] \cdot 2THF ist das Stickstoffatom trigonal planar koordiniert [2], während bei den beiden schwereren homologen Derivaten 1 und 2 die Pnikogenatome in einer pyramidalen Umgebung vorliegen. Die am Phosphoratom berechnete Winkelsumme beträgt 328,7°, während man beim Magnesium-bis[bis(trimethylsilyl)arsanid] \cdot 2THF 2 Winkelsummen am Arsenatom von 309,1° (n = 1) und 325,8° (n = 2) ermittelt. Trotz der hier beobachteten Unterschiede verändert sich der Si-E-Si-Bindungswinkel nur geringfügig von 104,8° für Magnesium-bis[bis(trimethylsilyl)phosphanid] \cdot 2THF 1 auf 101,6° bzw. 102,9° für die homologe Arsenverbindung.

Die große Variationsbreite der Winkelsumme am Pnikogenatom ist bei einem hiervon nahezu unberührten Si-E-Si-Bindungswinkel kein Maß für eine Änderung der Hybridisierung des Pnikogenatoms, vielmehr spricht diese Flexibilität für das Vorliegen weitgehend ionischer Bindungen, so daß das Abknicken der Si₂E-Ebene gegenüber der Mg-E-Bindungsachse durch die Packung im Kristall hervorgerufen wird. Diese Beobachtung deckt sich auch mit den Befunden, daß ein großer Raumbedarf der neutralen Komplexliganden im Bis(1,3,5-trimethyl-1,3,5-triazinan)-Komplex des Calcium-bis[bis(trimethylsilyl)phosphanids] zur Planarität der Phosphoratome führen kann [5]. Die E-Si-Bindungen sind bei diesen Magnesium-Derivaten gegenüber den neutralen Phosphanen und Arsanen des Typs $R-E(SiMe_3)_2$ deutlich verkürzt. Im Phosphanid 1 beobachtet man eine um 4 pm kürzere Bindung als im Tris(trimethylsilyl)phosphan mit 226 pm [15]. Beim Arsanid 2 trifft man ähnliche Verhältnisse an; die im Tetrakis(trimethylsilyl)diarsan (As-Si: 236 pm [16]) oder im Tris(trimethylsilyl)heptaarsan (As-Si: 240 pm [17]) bestimmten As-Si-Abstände sind um etwa den gleichen Betrag aufgeweitet, sowohl beim Lithium-bis(trimethylsilyl)arsanid \cdot DME [18] als auch bei den Calcium- und Strontium-bis[bis(trimethylsilyl)arsaniden] [19] beobachtet man eine noch stärkere Verkürzung dieser Bindung.

2.4. Kristallstrukturen

In Abb. 3 sind die Anordnungen der Neutralkomplexe 1 und 2 in den Elementarzellen einander gegenübergestellt. Dieser Vergleich zeigt sofort, daß zwischen diesen homologen Verbindungen keine Isotypie auftritt. Bei dem Magnesium-bis[bis(trimethylsilyl)arsanid] \cdot 2THF 2 sind die Bis(trimethylsilyl)arsanid-Liganden aufeinander zugerichtet, so daß

Abb. 3. Anordnung der Moleküle von Magnesium-bis[bis(trimethylsilyl)phosphanid] \cdot 2THF 1 (oben) bzw. -arsanid] \cdot 2THF 2 (unten) in stereoskopischer Darstellung. Die Atome wurden mit willkürlichen Radien gezeichnet, auf die Wiedergabe der Wasserstoffatome wurde verzichtet.

durch Magnesiumatome miteinander verknüpfte Schichten parallel (001) alternieren, wobei die THFund Arsanid-Schichten in z = 0 bzw. z = 0,5 liegen. Das leichtere Homologe 1 wird besser als aus den Molekülen aufgebaute Schichtstruktur beschrieben, wobei sich die Orientierung der Moleküle entsprechend der Raumgruppensymmetrie innerhalb der Schichten parallel (001) in z = 0,25 und z = 0,75 gleich ist, aber von Schicht zu Schicht umkehrt.

Zwischen den Molekülen treten nur lockere vander-Waals-Kontakte auf, die pyramidal koordinierten Pnikogenatome bilden keine Brücken zu benachbarten Molekülen aus.

3. Experimenteller Teil

3.1. Allgemeines

Alle Arbeiten wurden unter einer Atmosphäre von sauerstofffreiem und nachgereinigtem (BTS-Katalysator [20], P_4O_{10}) Argon durchgeführt. Die Lösungsmittel wurden nach üblichen Verfahren getrocknet und unter

Argon destilliert, deuterierte Solventien entgast und mit Argon gesättigt.

Die Messung der NMR-Spektren erfolgte an den Bruker Spectrometern AM200 und AC250, positives Vorzeichen steht für Tieffeldverschiebung. Für die Aufzeichnung der IR-Spektren (CsBr-Scheiben, Nujolverreibungen, Abschätzung der Intensitäten: sehr stark vs, stark s, mittelstark m, schwach w, Schulter sh) standen die Perkin-Elmer Spektrophotometer 684 und 883 zur Verfügung, die in den Bereichen von 2800 cm⁻¹ bis 3000 cm⁻¹ sowie 1350 cm⁻¹ bis 1500 cm⁻¹ auftretenden und von den Schwingungen des Nujols überlagerten Banden werden nicht aufgelistet.

Die bei den Elementaranalysen auftretenden Abweichungen lassen sich auf Ether-Verlust bei der Handhabung und Verbrennung zurückführen. Schmelzpunkte wurden unter Argon in zugeschmolzenen Kapillaren bestimmt.

3.2. Bis(trimethylsilyl)arsan

Zu 24,9 g Tris(trimethylsilyl)arsan (25,0 ml; 84 mmol) in 50 ml Tetrahydrofuran tropft man langsam eine

Tabelle 5

Kristalldaten von Magnesium-bis[bis(trimethylsilyl)phosphanid] \cdot 2THF 1 und -arsanid] \cdot 2THF 2 sowie Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Verbindung	1	2	_
Summenformel	$C_{20}H_{52}MgO_2P_2Si_4$	$C_{20}H_{52}As_2MgO_2Si_4$	
Molmasse, g mol ⁻¹	523,23	611,13	
Kristallabmessungen, mm	0,3 imes 0,3 imes 0,4	$0,5 \times 0,35 \times 0,35$	
Meßtemperatur, °C	- 80	- 100	
Raumgruppe [21a]	C2/c (Nr. 15)	<i>P</i> 1 (Nr. 2)	
a, pm	1861,7(3)	980,7(2)	
b, pm	976,0(3)	1266,1(2)	
<i>c</i> , pm	1921,2(3)	1437,6(2)	
α, °	90	78,29(1)	
β, °	109,67(1)	88,02(2)	
γ, °	90	70,28(1)	
Zellvolumen V , nm ³	3,2872(13)	1,6442(5)	
Ζ	4	2	
Ber. Dichte $d_{\rm her}$, g cm ⁻³	1,057	1,234	
μ (Mo-K α), mm ⁻¹	0,311	2,210	
F(000)	1144	644	
Scanmodus	ω-Scan	ω-Scan	
Gemessener Bereich	$4,5 < 2\Theta < 50,0^{\circ}$	$2.9 < 2\Theta < 50.0^{\circ}$	
Indexbereich	$0\leq h\leq 22,$	$0 \le h \le 11$,	
	$0 \le k \le 11,$	$-15 \le k \le 15,$	
	$-22 \leq l \leq 22$	$-16 \le l \le 17$	
Gemessene Reflexe	2998	5766	
Symmetrieunabhängige Reflexe	2904	5766	
Verwendete Daten N _o	2904	5761	
Restraints	0	0	
Zahl der verf. Parameter $N_{\rm p}$	236	465	
N _o /N _p	12,3	12,4	
Gütefaktor s (an F^2) ^a	1,074	1,047	
wR2 (an F^2) ^a	0,1077	0,1020	
$R1 (I > 2\sigma(I))^{a}$	0,0381 (2461 Reflexe)	0,0391 (4855 Reflexe)	
Restelektronendichte, e nm ⁻³	426/-388	1589/-951	

^a Definition der *R*-Werte: $R1 = (\Sigma | |F_o| - |F_c| |) / \Sigma | F_o|$, $wR2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$ mit $w^{-1} = \sigma^2 (F_o^2) + (a \cdot P)^2$, $s = \{\Sigma [w(F_o^2 - F_c^2)^2 / (N_o - N_p) \}^{1/2}$.

Mischung aus 0,76 g Wasser und wenigen Tropfen einer 0,1 M Salzsäure in 25 ml THF bei 0°C. Nach beendeter Zugabe erhitzt man den Ansatz 16 Std auf 80°C und kontrolliert den Reaktionsverlauf ¹H-NMRspektroskopisch. Nach vollständigem Umsatz destilliert man zunächst die Lösungsmittel unter vermindertem Druck ab, bevor man das Produkt einer Feindestillation im Vakuum unterwirft. Ausbeute: 10,8 g (49 mmol) 58%.

3.3. Magnesium-bis[bis(trimethylsilyl)phosphanid] · 2THF 1

Bei -78° C tropft man 5 ml einer 1,0 M Magnesiumn/sec-dibutanid-Lösung in *n*-Heptan (5,0 mmol) zu 1,78 g in 20 ml THF gelöstem Bis(trimethylsilyl)phosphan (2,17 ml; 10,0 mmol). Nach vollständiger Zugabe erwärmt man den Ansatz auf Raumtemperatur und engt die Lösung auf wenige Milliliter ein. Bei -30° C scheiden sich farblose, quaderförmige Kristalle ab. Ausbeute: 2,3 g (4,3 mmol) 86%.

Die physikalischen Daten sind mit den bereits publizierten Werten [5] identisch.

3.4. Magnesium-bis[bis(trimethylsilyl)arsanid] · 2THF 2

Bei -50° C tropft man 4,2 ml einer 1,0 M Magnesium-*n/sec*-dibutanid-Lösung in *n*-Heptan (4,2 mmol) zu 1,88 g in 25 ml Tetrahydrofuran gelöstem Bis(trimethylsilyl)arsan (1,8 ml; 8,47 mmol). Der Ansatz wird langsam auf Raumtemperatur erwärmt und dann auf wenige Milliliter eingeengt. Bei -10° C scheidet sich Verbindung 2 in Form farbloser Quader ab. Nach dem Abpipettieren der Mutterlauge wird dieses Arsanid 2 bis zu einem Enddruck von 10^{-2} Torr getrocknet. Ausbeute: 1,87 g (3,07 mmol) 73%.

Schmp.: 116–118°C. NMR-Daten siehe Tabelle 1. IR (Nujolverreibung zwischen CsBr-Scheiben, cm⁻¹): 1344w, 1301m, 1238s, 1177w, 1074w, 1024s, 829vs, 744m, 679s, 621s, 356vs, 345sh. Elementaranalyse (ber. für THF-Addukt, MgAs₂Si₄OC₁₆H₄₄): C 35,63 (35,65); H 8,15 (8,23)%.

3.5. Einkristallstrukturbestimmungen von 1 und 2

Die Einkristalle der Verbindungen 1 und 2 wurden nujolbeschichtet in dünnwandige Lindemann-Röhrchen eingeschmolzen. Die Sammlung der Datensätze erfolgte unter Kühlung auf einem automatischen Vierkreisdiffraktometer CAD4 der Firma Enraf-Nonius, Delft (Mo K α -Strahlung, Graphitmonochromator). Die Zellparameter sowie Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung sind in Tabelle 5 zusammengestellt. In einstündigen Intervallen wurden drei Intensitätskontrollreflexe gemessen, die keinen signifikanten Intensitätsabfall aufwiesen, und alle 400 Reflexe fand Kontrolle der Orientierungsmatrix statt. Es wurden weder Extinktions- noch Absorptionskorrekturen durchgeführt.

Beide Strukturen ließen sich mit direkten Methoden lösen, die Verfeinerung erfolgte nach dem Verfahren der kleinsten Fehlerquadrate mit vollständiger Matrix mit Hilfe des Programmsystems SHELXL-93 an F²-Werten [21b]. Es fanden die Atomformfaktoren der neutralen Atome Mg, As, P, Si, O und C nach Cromer und Mann [21c] und für die Wasserstoffatome nach Stewart et al. [21d] Verwendung.

Bei beiden Verbindungen wurden alle schwereren Atome anisotrop und alle Wasserstoffatome isotrop verfeinert. Vollständige Tabellen der Ortskoordinaten der H-Atome, der anisotropen Temperaturfaktoren der schwereren Atome, der Bindungslängen und -winkel sowie die F_o/F_c -Tabellen können bei den Autoren angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (DFG), Bonn, sowie dem Fonds der Chemischen Industrie, Frankfurt/M., für die großzügige finanzielle Förderung.

Literatur

- U. Wannagat, H. Autzen, H. Kuckertz und H.-J. Wismar, Z. anorg. allg. Chem., 394 (1972) 254; siehe auch L.M. Engelhardt, B.S. Jolly, P.C. Junk, C.L. Raston, B.W. Skelton und A.H. White, Aust. J. Chem., 39 (1986) 1337.
- [2] D.C. Bradley, M.B. Hursthouse, A.A. Ibrahim, K.M. Abdul Malik, M. Motevalli, R. Möseler, H. Powell, J.D. Runnacles und A.S. Sullivan, *Polyhedron*, 9 (1990) 2959.
- [3] M. Westerhausen, Inorg. Chem., 30 (1991) 96.
- [4] M. Westerhausen und W. Schwarz, Z. anorg. allg. Chem., 609 (1992) 39.
- [5] M. Westerhausen und W. Schwarz, J. Organomet. Chem., 463 (1993) 51.
- [6] M. Westerhausen und W. Schwarz, Z. anorg. allg. Chem., 620 (1994) 304.
- [7] A. Job, R. Reich und P. Vergnaud, Bull. Soc. Chim. Fr., 35 (1924) 1404.
- [8] F.F. Blicke und J.F. Oneto, J. Am. Chem. Soc., 57 (1935) 749.
- [9] H. Bürger und U. Goetze, J. Organomet. Chem., 12 (1968) 451.
- [10] (a) E. Fluck, H. Bürger und U. Goetze, Z. Naturforsch., 22b (1967) 912; (b) W. Uhlig und A. Tzschach, Z. anorg. allg. Chem., 576 (1989) 281.
- [11] G. Becker, G. Gutekunst und H.J. Wessely, Z. anorg. allg. Chem., 462 (1980) 113.
- [12] S.R. Drake, P. Hall und R. Lincoln, Polyhedron, 12 (1993) 2307.
- [13] (a) P.R. Markies, O.S. Akkerman, F. Bickelhaupt, W.J.J. Smeets und A.L. Spek, Adv. Organomet. Chem., 32 (1991) 147; (b) C.E. Holloway und M. Melnik, J. Organomet. Chem., 465 (1994) 1.

5

- [14] R. Allmann in A.L. Rheingold (Hrsg.), Homoatomic Ring, Chains and Macromolecules of Main-Group-Elements, Elsevier, Amsterdam, 1977, S. 25. Die Konformation fünfgliedriger Ringe kann an der Torsionswinkelabfolge erkannt werden: twisted: ϑ₁, ϑ₂, ϑ₃, ϑ₂ und ϑ₁; envelope: ϑ₁, -ϑ₂, 0, ϑ₂ und -ϑ₁.
- [15] G.A. Forsyth, D.W.H. Rankin und H.E. Robertson, J. Mol. Struct., 239 (1990) 209.
- [16] G. Becker, G. Gutekunst und C. Witthauer, Z. anorg. allg. Chem., 486 (1982) 90.
- [17] (a) H.G. von Schnering, D. Fenske, W. Hönle, M. Binnewies und K. Peters, Angew. Chem., 91 (1979) 755; (b) W. Hönle, J. Wolf und H.G. von Schnering, Z. Naturforsch., 43b (1988) 219.
- [18] G. Becker und C. Witthauer, Z. anorg. allg. Chem., 492 (1982) 28.
- [19] M. Westerhausen und W. Schwarz, Z. Naturforsch., 50b (1995) im Druck.
- [20] M. Schütze, Angew. Chem., 70 (1958) 697.
- [21] (a) T. Hahn (Hrsg.), International Tables for Crystallography, Vol. A, Space Group Symmetry, 2. Aufl., D. Reidel, Dordrecht, NL, 1984; (b) G.M. Sheldrick, SHELXL-93, Universität Göttingen, 1993; (c) D.T. Cromer und J.B. Mann, Acta Crystallogr., A24 (1968) 321; (d) R.F. Stewart, E.R. Davidson und E.R. Simpson, J. Chem. Phys., 42 (1965) 3175.